
Magic Clothing是一个专注于控制性的服装驱动图像合成的项目,它是OOTDiffusion模型的一个分支版本,旨在通过服装来控制图像的生成。并且官方团队发布了在 768 分辨率上训练的模型权重,此版本中服装和文本提示的强度可以独立调整。以及支持与IP-Adapter-FaceID、ControlNet-Openpos模型一起使用,能够使用肖像和参考姿势图像作为附加条件。这个项目的目标是为图像合成提供更多的控制和灵活性,使得用户能够根据自己的需求创建更具个性化和创意的图像。 MagicClothing权重文件:https://huggingface.co/ShineChen1024/MagicClothing github:https://github.com/ShineChen1024/MagicClothing/tree/main OOTDiffusion技术论文:https://arxiv.org/abs/2403.01779 IP-Adapter-FaceID:https://huggingface.co/h94/IP-Adapter-FaceID Magic Clothing的主要功能特点 控制性:用户可以通过文本提示来控制图像合成中的服装细节,从而生成定制的、穿着特定服装的人物图像。 高度可控:系统能够在生成过程中融合服装细节,实现高度可控和细粒度的图像输出。 多模态支持:支持IP-Adapter-FaceID,允许使用面部图像作为额外条件,提高图像合成的个性化和准确性。 模型更新:提供了不同分辨率的模型权重,如512和768分辨率,以及最新的1024分辨率版本,适用于VTON-HD和DressCode。 可视化工具:提供了Gradio工具,用户可以通过这些工具来探索和使用Magic Clothing的功能。 ComfyUI_MagicClothing体验 ComfyUI_MagicClothing是MagicClothing虚拟试衣的非官方实现ComfyUI插件,但也是一款强大的ComfyUI插件,支持功能如下: 通过提示生语成服装图像 IPAdapter FaceID 配合人脸检测和服装图像合成 IPAdapter FaceID 配合 controlnet openpose 和服装图像合成 支持上半身、下半身和全身模型 ComfyUI_MagicClothing插件安装 可以使用插件管理器搜索ComfyUI_MagicClothing安装,或者采用Git工具安装。 Git安装如下 在 ComfyUI 的 custom_nodes 目录下运行下列CLI命令 git clone https://github.com/frankchieng/ComfyUI_MagicClothing.git pip install -r requirements.txt 模型下载 需要从Huggingface下载 cloth_segm.pth, magic_clothing_768_vitonhd_joint.safetensors(上半身模型), OMS_1024_VTHD+DressCode_200000.safetensors(下半身和全身模型)3个模型,并将它们放置在ComfyUI/custom_nodes/ComfyUI_MagicClothing/checkpoints 目录下。 同时,如果需要体验 ipadapterfaceid保持面部风格一致性迁移,那么还需要安装 ComfyUI_IPAdapter_plus 自定义节点。然后从IPAdapter FaceID 模型,并将它们放置在对应目录结构下。 另外,如果还想运行 controlnet openpose 部分,那么必须安装 comfyui_controlnet_aux 插件,以及下载 openpose 模型中的 body_pose_model.pth, facenet.pth 和 hand_pose_model.pth,并将它们放置在 custom_nodes/comfyui_controlnet_aux/ckpts/lllyasviel/Annotators目录下。 还有部分模型会在运行时根据用户选项下载(如openpose模型 body_pose_model.pth, facenet.pth 和 hand_pose_model.pth),因此需要能访问huggingface。 文件结构如下: ComfyUI |– models | |– ipadapter | | |– ip-adapter-faceid-plus_sd15.bin | | |– ip-adapter-faceid-plusv2_sd15.bin | | |– ip-adapter-faceid_sd15.bin | |– loras | | |– ip-adapter-faceid-plus_sd15_lora.safetensors | | |– ip-adapter-faceid-plusv2_sd15_lora.safetensors | | |– ip-adapter-faceid_sd15_lora.safetensors |– custom_nodes | |– ComfyUI_MagicClothing | | |– checkpoints | | | |– cloth_segm.pth | | | |– magic_clothing_768_vitonhd_joint.safetensors | | | |– OMS_1024_VTHD+DressCode_200000.safetensors MagicClothing模型体验 01. simple workflow 02. IPAdapater FaceID workflow 03. IPAdapater FaceID chained with controlnet openpose workflow 04. full-body workflow with IPadapterFaceid 注:实践效果中对于人物面部特征保持相对弱,作者也提到很快会有人物细节更好改善版模型。目前内置模型为SD1.5模型,作者称将会尝试dreamshape8, xxmix9realistic_v40等SDXL模型。 附录 github:https://github.com/ShineChen1024/MagicClothing/tree/main 插件:https://github.com/frankchieng/ComfyUI_MagicClothing/tree/main
数据统计
相关导航

YAYI2(雅意2)是中科闻歌推出的新一代开源大语言模型,支持中文、英语等 10 多种语言。基于 Transformer 架构,参数规模达到 30B。YAYI2 采用 2 万亿 Tokens 的高质量语料进行预训练,并结合人类反馈强化学习,确保模型与人类价值观对齐。其多模态交互功能支持图文互生成、PDF 解析等。YAYI2 广泛应用于媒体宣传、舆情分析、政务治理、金融分析等领域,为企业提供 AI 辅助工具和知识库问答系统。

Phantom
Phantom是由字节跳动推出的一款创新视频生成框架,专注于主体一致性的视频生成任务(Subject-to-Video, S2V)。它通过跨模态对齐技术,将文本和图像提示结合起来,从参考图像中提取主体元素,并生成与文本描述一致的视频内容。

琴乐大模型
琴乐大模型是由腾讯AI Lab与腾讯TME天琴实验室共同研发的人工智能音乐创作大模型。它可以通过输入中英文关键词、描述性语句或音频,能够直接生成立体声音频或多轨乐谱。

Magi
Magi 的模型是一个可以自动将漫画页转录成文字并生成剧本。该模型通过识别漫画页面上的面板、文字块和角色,实现了全自动的剧本生成功能。

Seed-TTS
Seed-TTS是由字节跳动开发的一系列大规模自回归文本到语音(TTS)模型。它能够生成高度自然、与人类语音几乎无法区分的语音。这个模型特别擅长学习语音上下文、说话人相似度和自然度等方面的特征,从而产生质量极高的语音输出。

Segment Anything
Segment Anything是一个基于深度学习的图像分割模型,它可以根据用户的输入提示(如点或框)生成高质量的物体遮罩。它可以用于为图像中的任何物体生成遮罩,无论是常见的物体(如人、车、猫等),还是罕见的物体(如火箭、恐龙、魔法棒等)。它的特点是具有强大的零样本性能,即它可以在没有见过的类别上进行分割,而不需要额外的训练数据。它的另一个优点是具有快速的推理速度,即它可以在几秒钟内处理一张图像,而不需要显卡或云计算资源。

SDXL-Lightning
SDXL-Lightning是一款由字节跳动开发的开源免费的文生图开放模型,能根据文本快速生成相应的高分辨率图像。该模型能够在极短的时间内生成高质量和高分辨率的图像,是目前最快的文生图模型之一。

天谱乐
天谱乐是唱鸭旗下的AI音乐品牌,为用户提供个性化、智能化的音乐创作体验。它支持文本、图片和视频生成音乐,让创作变得简单便捷。利用先进的多模态理解与生成技术,天谱乐能够生成与图片和视频情感高度契合的音乐,并提供发行级的歌曲创作服务。无论是专业音乐人还是普通爱好者,天谱乐都能帮助您高效创作出独一无二的音乐作品。
暂无评论...